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The asymptotic solution of shock tube flows with homogeneous condensation is 
presented for both smooth, or subcritical, flows and flows with an embedded shock 
wave, or supercritical flows. For subcritical flows an analytical expression, independent 
of the particular theory of homogeneous condensation to be employed, that determines 
the condensation wave front in the rarefaction wave is obtained by the asymptotic 
analysis of the rate equation along pathlines. The complete solution is computed by an 
algorithm which utilizes the classical nucleation theory and the Hertz-Knudsen droplet 
growth law. For supercritical flows four distinct flow regimes are distinguished along 
pathlines intersecting the embedded shock wave analogous to supercritical nozzle 
flows. The complete global solution for supercritical flows is discussed only 
qualitatively owing to the lack of a shock fitting technique for embedded shock waves. 
The results of the computations obtained by the subcritical algorithm show that most 
of the experimental data available exhibit supercritical flow behaviour and thereby the 
predicted onset conditions in general show deviations from the measured values. The 
causes of these deviations are reasoned by utilizing the qualitative global asymptotic 
solution of supercritical flows. 

1. Introduction 
The shock tube offers an alternative technique with desirable features in addition to 

the well-known cloud chamber and nozzle experiments in understanding condensation 
dynamics. The experimental conditions in this case can be better controlled. The 
application of the shock tube to study condensation dynamics was initiated by 
Wegener & Lundquist (195 1) and the first streak photographs of the condensation 
zones were obtained by Glass & Patterson (1955). Since then, shock tube experiments 
with non-equilibrium condensation taking place in the rarefaction wave have been 
carried out by various investigators among whom we can cite Courtney (1965), Homer 
(1971), Kawada & Mori (1973), Barschdorff (1975), Kalra (1975), Lee (1977) and 
Peters (1987). A detailed analysis for the onset of condensation was presented by Wu 
(1977) by solving numerically the system of differential equations arising from the 
condensation rate equation. The solution including the effect of heat addition on the 
flow field was exhibited by Sislian (1975) using the numerical method of characteristics; 
however, with the initial conditions chosen for comparison with the experiments of 
Kalra (1975) the characteristics emanating from the origin were seen to intersect in the 
heat addition zones, showing clearly the existence of embedded shock waves which 
were then smoothed out by employing Lax’s (1954) method with artificial viscosity. 
Recently a comprehensive study was carried out by Smolders (1992), (see also 
Smolders, Niessen & van Dongen 1992), employing the random choice method. 
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FIGURE 1. Wave diagram for subcritical shock tube flows with non-equilibrium condensation: regions 
4 and 1 correspond respectively to the initial states in the driver section and in the channel, OC is the 
path of the contact surface, OD is the path of shock travelling to the right, OH and OT are 
respectively the head and tail of the frozen rarefaction wave, 0s denotes the locus of those 
thermodynamic states where saturation is reached, EF is the condensation wave front, OMP and LP 
are respectively typical left- and right-running characteristics and the dashed line is a typical pathline 
initially at xi. 

Unfortunately no attempt to match the theoretical predictions with measurements has 
been successful. Only some qualitative agreement has been achieved. 

It is the purpose of the present investigation to give a full detailed analysis of such 
flows substantiated by numerical computations. For this reason we consider a mixture 
of a condensible vapour and a carrier gas which for time t’ < 0 is at rest in the driver 
section (region 4 in figure 1) of a shock tube with initial relative humidity q4, initial 
specific humidity o4 and initial temperature Ti .  At t‘ = 0+, just after the diaphragm at 
x’ = 0 is instantly removed, the contact surface moves off along the path OC, a shock 
wave travels to the right along path OD and a rarefaction wave centred at 0 travels 
to the left (we herein assume the ideal case of a planar centred expansion wave). The 
lines OH and OT are respectively the rarefaction wave head and the virtual frozen 
rarefaction wave tail. The line 0s represents the constant thermodynamic state along 
which saturation is reached. After the rupture of the diaphragm, the mixture suddenly 
expands into the channel (region 1 in figure 1) and the condensible vapour is cooled in 
a metastable state reaching relatively high supersaturations until condensation becomes 
visible (onset of condensation) due to a significant number of droplets formed by homo- 
geneous condensation (heterogeneous condensation is neglected in this consideration). 
The curve EF in the x’-t’ diagram of figure 1 shows a typical wave front for the onset 
of condensation. The characteristics or waves emanating from point 0 remain almost 
straight as long as the effect of homogeneous condensation on the flow variables is 
negligibly small (negligible heat addition). However, as these characteristics cross the 
condensation wave front EF of figure 1, they begin to curve appreciably towards the 
head of the rarefaction wave due to substantial heat addition. Curve OMP shows such 
a typical characteristic whereas curve LP shows that part of a typical right-running 
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characteristic in the head addition zones. If the amount of heat added to the flow in 
the heat addition zones exceeds a critical value, the characteristics emanating from 
point 0 may intersect forming embedded shock waves. In this case the condensation 
front EF of figure 1 may not necessarily represent the onset of condensation as will be 
discussed in detail in $ 5 .  The essential problem is to locate the condensation wave front 
EF, to determine the effect of heat addition on the non-stationary flow field and, in the 
case of an embedded shock, to be able to fit the shock. 

In this investigation a detailed asymptotic analysis of the condensation rate equation 
(coupled to the equations of flow and state) along pathlines is carried out to provide 
a satisfactory description of shock tube flows with homogeneous condensation (the 
Riemann problem with non-equilibrium phase transition). The details of the 
asymptotic method of solving the condensation rate equation in quasi-one-dimensional 
nozzle flows can be found in Blythe & Shih (1976) and Clarke & Delale (1986). 
Predictions of the asymptotic method in transonic nozzle flows have recently been 
given by Delale, Schnerr & Zierep (1993a, b). At this point, because of the unsteady 
nature of the flow, it is important to mention that the asymptotic solution of steady 
quasi-one-dimensional nozzle flows cannot directly be applied along pathlines. 
However, the mathematical method of solving the rate equation is the same and the 
same rate laws (nucleation and droplet growth) are employed in both cases (unsteady 
effects of nucleation and droplet growth, which at best can refine the analytical 
structure of the condensation zones, are neglected). In spite of the fact that the 
analytical structure of the condensation zones along pathlines presented here resembles 
that of quasi-one-dimensional flows (Clarke & Delale 1986), the complete gas 
dynamical solution along these pathlines possesses the unsteady character of the flow 
field and is completely different from the one-dimensional steady solution of nozzle 
flows. In fact the nearly frozen approximations to the onset of condensation and, in the 
case of embedded shock waves, shock formation are completely different in each flow. 
It is also worthwhile to mention that in the case of embedded discontinuities such as 
shock waves, depending on the working fluid and initial conditions, the solution 
downstream of the shock need not necessarily be a relaxing flow toward ther- 
modynamic equilibrium (e.g. Smolders et al. 1992 have shown that condensation 
behind the discontinuity can be totally quenched and restarted again forming a 
periodic flow pattern for the case of heterogeneous condensation. Similar flow patterns 
should not be ruled out for the case of homogeneous condensation with some special 
conditions at relatively low supersaturations and possibly large times; in such a case, 
the relaxation solution behind the embedded shock of 94 should be replaced by the 
corresponding natural solution governed by the conditions just downstream of the 
shock) . 

With these remarks in mind we herein present the global solution for both smooth 
flows and flows with embedded shock waves (in the latter case only those non- 
equilibrium flows relaxing toward thermodynamic equilibrium along pathlines 
downstream of the shock are discussed). Smooth (subcritical) flows are studied both 
qualitatively and quantitatively whereas flows with embedded shock waves (super- 
critical flows) are discussed only qualitatively owing to lack of a shock fitting 
technique. Four distinct supercritical flow regimes along pathlines intersecting the 
embedded shock wave are distinguished and the global solution is constructed by an 
assembly of pathlines falling in appropriate supercritical regimes. A subcritical 
algorithm which exhibits the asymptotic solution in distinct condensation zones along 
pathlines is developed for the expansion of a mixture of water vapour and a carrier gas 
in the rarefaction wave. The condensation wave front is precisely located and 
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compared with the onset conditions of different experiments. Finally the causes of the 
departure of the asymptotic predictions from the experimental onset conditions are 
identified and discussed in detail. 

2. Basic equations 

normalized form and cast them into their normalized characteristic form. 
In this section we discuss the basic equations of condensing shock tube flows in 

2.1 .  The f low and state equations 
We consider the equations of motion of unsteady compressible flow of a mixture of a 
condensible vapour, herein denoted by subscript u, and a carrier gas, denoted by 
subscript i, in the form 

where p’, p‘ and u‘ are respectively the mixture density, the mixture pressure and the 
flow velocity, t’ denotes the time, x’ is the axial coordinate along the shock tube with 
origin at the location of the diaphragm and dldt‘ denotes the total derivative. The 
mixture enthalpy h‘ is defined by 

h’ = C‘ p m  T’-gL’, (4) 
where T‘ is the temperature, g is the ratio of the mass flow rate of the condensate to 
that of the mixture, called the condensate mass fraction, L’ is the latent heat of 
condensation and cbm is the specific heat of the mixture at constant pressure given by 

with cbi and cav denoting respectively the specific heats at constant pressure of the 
carrier gas and of the vapour and with w4 denoting the initial specific humidity of the 
vapour in the driver section (see figure 1). 

The thermal equation of state of the mixture follows by Dalton’s law from the 
thermal equations of state of the condensible vapour and carrier gas, both taken to be 
ideal gases, i.e. 

where (JZ is the universal gas constant, pi, ,uv are respectively the molecular masses of 
the carrier gas and condensible vapour, pi and ph are respectively the carrier gas and 
vapour densities related to the mixture density p’ by the relations 

and 

Equation (6) then takes the form 

p; = ( 1  -w4)p’  

P:, = (w4 -8) P’. 
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where the mixture molecular mass ,urn is defined by 

+-. 1 1-w, w4 - - 
P m  Pi Pv 

For convenience we now carry out the normalization 

p = p‘/pi, p = p’/pi,  T = T’/Ti,  u E u‘la; (1 1) 

and h h’/h; = h’/(cbm Ti),  L E LpV/(%Ti) ,  (12) 

a;2 = (%/Pm)  Y m  Ti (13) 

where a; is the initial speed of sound in the driver section given by 

with the mixture adiabatic exponent ym defined by 

The coordinates t’ and x’ are non-dimensionalized by 

t = t’/O‘, x = x’/(a; 0’), 

where 0‘ is some characteristic flow time. The flow and state equations (l), (2), (3) and 
(9) now assume the normalized form 

-+-(pu) aP a = 0, 
at  ax 

and with dldt = a/& + u a p x .  The above normalized flow and state equations 
(16)-(19) do not form a complete system unless they are supplemented by the 
condensation rate equation for g. 

2.2. The condensation rate equation 
The non-equilibrium condensation rate equation is constructed from a convenient 
nucleation rate equation together with a droplet growth law (e.g. see Sislian 1975; 
Sislian & Glass 1976; Wu 1977). If we consider a fluid element at (x’, t’) on a 
pathline of figure 1 and assume the droplets formed to be spherical, a droplet of 
condensate in this element formed at a point (x’, 7’) upstream on the same pathline with 
initial radius (the critical radius for droplet formation) r’*(x’, 7’) will grow into its 
present size r’ given by 

r’(x’, 7’; x’, t’) = r’*(x’, 7’) + -dt‘, s T I  dr‘ dt‘ 
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where dr’ldt’ is the local droplet growth rate of the droplet, assumed to depend only 
on the local state of the two-phase mixture, and where it is understood that the 
integration is carried out along the pathline passing through (x’, t’). The rate equation 
for the condensate mass fraction g in the fluid element at (x’,t’) then follows by 
definition as 

g(x’, t‘) = $npLon(x‘, t‘) 

along a pathline where dx‘ldt’ = u’. In (23) ti is the time when saturation is reached 
along a pathline, J‘(x’, 7’)  is the rate of production of condensation nuclei of critical 
size per unit time and volume at (x’, 79, pZon(x’, t’) is the density of the condensate at 
(x’, t’) and r’(x’, 7’ ; x’, t’) is given by (22). A complete physical description of the rate 
equation (23) now demands that the nucleation rate J’ and the droplet growth rate 
dr‘ldt‘ be known. Unfortunately there are no universally accepted theories of these 
rate laws which one can employ independent of the choice of the condensible vapour. 
Nevertheless the well-known nucleation theories (Zettlemoyer 1969) suggest that J‘ can 
in general be taken to be of the form 

J’ = 6J= C;‘Z(P, T,g)exp[-K-lB(p, T,g)l, (24) 

where 6 is a normalization constant for the nucleation rate, B and C are respectively 
the normalized activation function and the normalized pre-exponential factor of 
nucleation theories both depending on the local thermodynamic state of the mixture, 
and K is the nucleation parameter depending only on the initial conditions of the 
vapour in the driver section and on the choice of the mixture of condensible vapour and 
carrier gas. Homogeneous nucleation lasting for a relatively long time compared to 
flow time to reach its peak implies K 4 1. Before we discuss the general form of the 
droplet growth rate, herein assumed to be independent of the droplet radius, we 
normalize the droplet radius r’ as 

where 
r E r’/ri, (25) 

with p,,, denoting the mean density of the condensate in the temperature ranges 
investigated. Using the normalization of the previous section together with (25), the 
radius independent normalized droplet growth law can be written as 

drldt = ha( P, T, g ) ,  (27) 

where SZ is the droplet growth function depending on the thermodynamic state of the 
mixture and h is the droplet growth parameter. In particular rapid droplet growth in 
the rarefaction wave, which corresponds to small droplet growth time compared to 
characteristic flow time, is characterized by h % 1. By substituting from (24) for J‘ and 
from (27) for dr’ldt’, and by approximating pi,,(x’, t’) by p,,, in the operational 
temperature range, the integral condensation rate equation on pathlines assumes the 
normalized form 

The above normalized rate equation, as it stands, is coupled to the equations of flow 
and state of the previous section. 
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2.3. The characteristic form of the equations of motion 
Using standard techniques (e.g. see Vincenti & Kruger 1965; Whitham 1974; Sislian 
1975), the normalized flow and state equations (16t(19) can be cast into the 
characteristic form 

on dx/dt = u _+ af and 

on dx/dt = u, where the function x is defined by 

L, = dL/dT and uf is the normalized (with respect to a:) local frozen speed of sound 
x = dg/dt, (31) 

On the other hand the integral rate equation (28) is already in characteristic form (i.e. 
g = g(t) on dx/dt = u). Thus (28), (29) and (30) together with the thermal equation of 
state (19) form a complete set for the solution of shock tube flows with homogeneous 
condensation. It is worthwhile to mention that for frozen flows (g  = 0), (29) yields 
constant Riemann invariants (R, = 2af/(ym - 1) k u = constant) on the characteristics 
dx/dt = u uf and (30) reducesto the classical isentropic relation (p  K TYm’(Ym-l) 1. 

3. Asymptotic solution of subcritical or smooth flows 
In this section we present the asymptotic solution of the rate equation (28) along 

pathlines in the double limit as K- t  0 and h + co characterizing respectively large 
nucleation time and small droplet growth time compared to the characteristic flow 
time. In this case the behaviour of the activation function B = B(t) distinguishes the 
distinct condensation zones along pathlines. A typical variation of the activation 
function B along a pathline with distinct condensation zones is shown in figure 2. For 
t < t,, with t, corresponding to the time when the saturation line in the pw-T diagram 
of the vapour is traversed, B is infinite (vanishing nucleation rate). At t = t,, called the 
‘relative onset point ’, B exhibits an absolute minimum [(dB/dt),=,, = 01 corresponding 
to a maximum nucleation rate which marks the end of the empirical onset of 
condensation. The distinct condensation zones along any pathline then follow from the 
corresponding behaviour of the activation function before and after the onset of 
condensation. 

3.1. To onset of condensation from initial growth 
This is the region which occurs in the interval t ,  < t < t, along any pathline and is 
dominated by the production of condensation nuclei that peaks at t = t,. Herein four 
physically distinct (only two are asymptotically distinct) condensation zones can be 
distinguished. These are the initial growth zone (IGZ), further growth zone (FGZ), the 
rapid growth zone (RGZ) and the onset zone (OZ). Of these four physically distinct 
condensation zones, to be defined below, the first two and the last two are not 
asymptotically distinct. Thus the asymptotic analysis of the rate equation for these 
zones can be carried out in a combined fashion. The initial and further growth zones 
are defined as those zones where dB/dt = O( 1). They are distinguished physically. In 
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B 

FIGURE 2.  The variation of the normalized activation function B along a typical pathline 
exhibiting the physically distinct condensation zones in subcritical flows. 

the initial growth zone (IGZ), B = B,, where B, denotes the frozen activation function 
with g = 0. The further growth zone (FGZ) is distinguished as the zone where small 
deviations of B from B, start to occur with dB/dt still of O(1). However, since these 
two zones are not asymptotically distinct, the asymptotic solution of the rate equation 
(28) along any chosen pathline applies to both zones. This follows uniquely using 
Laplace’s method (see Erdelyi 1956; Sirovich 1971) for an end point minimum in the 
double limit as K+O and A+ 00. The resulting expressions for g and dg/dt in these 
zones, obtained following the asymptotic procedure given in Delale et al. (1993a), are 

r*(t) dB/dt 

6h3Q3(t) -6h2Q2(t) 

+ 3 h 4  r*(t) dB/dt 7 - [  r*(t) dB/dt T}, 

(33) 

(34) 
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with dB/dt given by 

(35) 
dB - aBdp aBdT aBdg _ _ _ _  +--+-- 
dt i3p dt aTdt  agdt 

along a pathline. 
The rapid growth (RGZ) and onset (OZ) zones are defined as those zones where 

dB/dt diminishes to O(Kliz)  as K+O along a pathline. The ‘relative onset point’ t = t, 
where dB/dt = 0 marks the end of the onset of condensation. In fact the onset zone 
(OZ), which contains the empirical onset point, can be regarded as being embedded in 
RGZ just upstream of the relative onset point t, (figure 2). The asymptotic expressions 
for g and its derivatives dgldt and d2g/dt2 in these zones follow from (28) using 
Laplace’s method for an end-point minimum (for details of the asymptotic method, see 
e.g. Delale et al. 1993~):  

g(t) = cO [2/i’(t)]-2 (exp [El) exp [ - K-’B(t)] 
P(t) 

where y(t) - K-’ dBldt > 0, 

P(t) = iK-’d2B/dt2 > 0 

with dB/dt to be evaluated from (35) and d2B/dt2 given by 

d2B - aBd2p aBd2T aBd2g a2B dp a2B dT  ----+--+--+-- +-- 
dt2 ap dt2 aTdt2 ag dt2 ap’(dt1 dT2(d t )  



102 C. F. Delale, G. H. Schnerr and J .  Zierep 

and where D-,(z), n = 1,2,3,4, is Whittaker’s parabolic cylinder function of z (see 
Abramowitz & Stegun 1965; Gradshteyn & Ryzhik 1980). In particular the asymptotic 
expressions for g and its derivatives at t,, where by subscript 1 we mean ‘evaluated at 
t = t, ’, can simply be obtained in the limit 

y+yl  = 0; /3+p1; Z+Z,;etc. (42) 

Having described the asymptotic solution of the rate equation (28) along a pathline 
in the characteristic condensation zones from initial growth to onset, we are now in a 
position to discuss the solution of the flow field in these zones. For this reason we 
introduce nearly frozen flows as those flows which show negligible influence of non- 
equilibrium condensation on the flow field (weak coupling between the flow equations 
(16b(19) and the condensation rate equation (28)). Thus for nearly frozen flows the 
solution for the flow field at a point (x, t )  located in the rarefaction wave is given in 
the first approximation by the classical isentropic solution 

U f ( X ,  t )  = - -+ 1 
Yrn+1 [“ t 1, (44) 

and P f k  0 = [ P f ( X ,  t)l”Y”> (46) 

where subscript f denotes the frozen (isentropic) values with g = 0 (the normalized 
frozen speed of sound at g = 0 is herein distinguished by subscript fo from its local 
frozen value at fixed g given by (32)). The equation for pathlines in nearly frozen flows 
can now, as a first approximation, be taken as 

where to is the normalized time when the rarefaction wave head reaches the initial 
position x,, of the pathline. 

In the initial growth zone (IGZ), B = Bf by definition and all other thermodynamic 
functions assume their frozen values, i.e. Z = Zf, 52 = Qf, etc. Thus in this zone the 
flow field can be evaluated exactly from the frozen solution given above by (43)-(47), 
and a complete decoupling of the rate equation from the flow and state equations is 
possible. The initial growth of the condensate mass fraction g and its total derivative 
dgldt can in turn be explicitly evaluated from (33) and (34) respectively by replacing 
all of the thermodynamic functions by their frozen values. In all of the remaining 
zones, FGZ, RGZ and OZ, the solution can be obtained iteratively starting with the 
frozen solution. Owing to the weak coupling between the condensation rate equation 
and the flow equations in nearly frozen flows, the frozen solution of (43E(47) will not 
be significantly altered in these zones. Thus as a first approximation the solution of 
(43k(47) can be assumed to hold in these zones as well (small deviations from this 
solution can occur especially in the onset zone (OZ). These deviations can, in principle, 
be taken into account by iteration using the characteristic equations (29) and (30) 
locally; however, such an iteration is normally not necessary since the onset zone has 
relatively small thickness). On the other hand the activation function B and its total 
derivatives will deviate from their frozen values appreciably especially in RGZ and OZ. 
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Consequently g and its total derivatives cannot be evaluated using the frozen values of 
B and its total derivatives. Thus a local iterative procedure is necessary to evaluate g 
and its derivatives in FGZ, RGZ and OZ. This iteration scheme is fairly simple. On any 
pathline of our choice and at any particular time t falling in one of the above zones, 
we first use the frozen solution to evaluate g and its total derivatives from (33) and (34) 
in FGZ and from (36k(38)  in RGZ and OZ. Using these values, we correct for the 
thermodynamic functions, in particular for B and its total derivatives dB/dt and 
d2B/dt2. Substitution of these corrected values into (33) and (34) in FGZ and into 
(36)-(38) in RGZ and OZ yields the new iterates of g and its total derivatives. Iteration 
ends when the successive iterative values for g and its total derivatives are close enough 
to each other (normally a single iteration suffices). Using this iterative scheme the 
asymptotic solution in each of the zones FGZ, RGZ and OZ can be exhibited along 
any pathline of our choice. In particular the relative onset point, which marks the end 
of the onset zone with a maximum nucleation rate, on any pathline can now be 
identified as the point where g) =o .  

t - t i  

Repeating the procedure for different pathlines, we can construct the locus of the 
relative onset points which we will refer to as the condensation wave front (curve EF in 
figure 1). 

3.2. Heat addition by homogeneous condensation 
Following the onset of condensation on a pathline, i.e. downstream of the onset zone 
( t  2 t,), the effect of heat added to the flow can no longer be neglected and the 
asymptotic solution presented above for nearly frozen flows becomes invalid. Heat 
addition to the flow on a pathline downstream of the onset zone essentially occurs in 
two asymptotically and physically distinct zones distinguished from the asymptotic 
solution of the condensation rate equation (28). These are the nucleation zone with 
growth (NZ) where both nucleation and droplet growth are important and the droplet 
growth zone (DGZ) which is dominated solely by droplet growth with practically 
vanishing nucleation rate (see figure 2). The nucleation zone with growth (NZ) starts 
at t = t, where the nucleation rate is maximum (B is minimum) and extends 
downstream on a pathline until nucleation becomes negligible for any practical 
purpose. A considerable amount of heat begins to be set free in this zone giving rise to 
increases in the pressure, density and temperature of the mixture over a short time 
interval. Using Laplace's method for an interior minimum at t = t,, the condensation 
rate equation (28) in this zone along a particular pathline yields 

dg Z( t )  exp [ - K'B( t)] x E - = r*"t) 
d t  P(t)  

4 bz = --K'I2 Pz exp [ -K-lBZ], 

the stretched coordinate $ is given by 
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&(qi) = fr7c1/'( 1 + erf qi), 

&($Q=-fl > 
1 -42  

= $7c1/'( I + erf$) - $4 e-$*, 

= -fr(qP + 1) e d ,  

with erf q5 denoting the conventional error function of qi. In particular as q5 --f co, the 
asymptotic expressions for (49) and (50) reduce to 

(58) 
and 

g - ~ ' " b ,  + 3(r;/a,) 4' + 3[fr+ (r;/aJ'] qi + ( r ; / ~ , ) ~  +:(r;/at)> 

These expressions, which correspond to linear growth of the droplet radius with time, 
cannot persist far downstream of this zone (i.e. in the droplet growth zone (DGZ)) 
where the two-phase mixture relaxes towards saturated equilibrium states. For this 
reason in the droplet growth zone we conveniently define a new normalized droplet 
radius by 

together with the scaling variables 

R G AK-1/3R, 

8 = ~ l K ~ ' / ~ ( t - t ~ )  

with A = ( x ~ / ~ ~ ~ K ) ~ / ~ A Q ~ .  (63) 

Now using Laplace's method for an interior minimum at t = t, in the double limit as 
K+ 0 and h + co together with the limit of vanishing nucleation rate, the condensation 
rate equation (28) yields 

g = R3++2R2+61R+E0, (64) 

(65) 
dg x = - = (7c~"b1)1/3A52(t) [3R' + 26' R +  4, 
dt 

where 

and where R satisfies the relaxation rate equation 

dR/dB = SZ 52/52, (69) 

R = O  at 8 = 0 .  (70) 

together with the initial condition 

With the asymptotic expressions given above for g and its total derivative dgldt 
along pathlines in the heat addition zones (NZ and DGZ), we are now in a position 
to present a semi-analytical solution for the flow field in these zones. The analytical 
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XO 0 X 

FIGURE 3. Construction scheme for the global solution of subcritical flows 
in the heat addition zones. 

nature of the solution in these zones follows from the analytical expressions for g and 
its total derivative dgldt obtained from the asymptotic solution of the rate equation 
(28). The flow field in these zones is obtained by combining the asymptotic expressions 
(49) and (50) in NZ and (64) and (65) together with (69) in DGZ with the characteristic 
equations (29) and (30) and solving numerically. Let Mi,j ,  j = 1,2,3, . . . be points in 
the heat addition zone along a given curve i in the x-t plane where the solution for the 
flow field is known (see figure 3; the starting curve i =  1 can be taken as the 
condensation wave front constructed in the previous subsection). The aim is to locate 
the set of points Mi+l,j on the (i+ 1)th curve to be constructed by interpolation and 
evaluate the local flow field at these points. Using (29) with the - sign along 
Mi,jMi+l , j  where dxldt = u-af ,  (29) with the + sign along N i , i M i + l , j  where 
dxldt = u+af,  and (30) on Mi, j+l  Mi+l , j  where dxldt = u in finite difference form, and 
the local asymptotic expressions (49) and (50) if M i , j  is in NZ and (64) and (65) 
together with (69) if M i , j  is in DGZ, we arrive at the solution of the flow field (p, T, u 
and g) at Mi+l , j  together with the coordinates of the points Ni, i  and Mi+l , j  by solving 
iteratively starting with the solution at points M i , j  and Mi:j+l. Repeating the procedure 
fromj = 1 to some integer of our choice, we find the solution for the flow field at points 
M i + l , j ; j  = 1,2, ... together with their locations in the (x, t)-plane. Starting with i = 1 
(the condensation wave front) and carrying the same procedure with increasing i until 
complete relaxation of the rate equation (69) is achieved, we obtain the semi-analytical 
solution of the flow field in the zones NZ and DGZ. 
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4. Flows with embedded shock waves (supercritical flows) 
The semi-analytical asymptotic solution of subcritical or smooth flows presented in 

the previous section is in general valid for shock-free flows where the amount of heat 
added to the flow does not exceed a critical value. When the initial conditions in the 
driver section are such that this critical amount of heat is exceeded in the heat addition 
zones along a pathline, the left-running characteristics intersect in these zones. Thus the 
subcritical solution is no longer valid and should be supplemented by embedded shock 
waves arising from compressive effects due to heat addition. In this case four distinct 
supercritical flow regimes (similar supercritical flow regimes are also encountered in 
steady nozzle flows which can be found in Delale et al. 1993b) can be distinguished 
depending on the shock location (z, t ,) along a pathline in the (x, t)-plane (figure 4a-d). 
In Regime I shown in figure 4(a) the embedded shock wave falls in FGZ where 
dB/dt = O(1) and the OZ, which contains the empirical onset point and also acts as 
a precompression zone due to the enormous amount of heat released by condensation 
in this case, is naturally embedded in FGZ. The excessive heat in this regime is added 
to the flow downstream of the shock in the zones NZ and DGZ (now structured 
differently). In Regime I1 the shock is embedded in RGZ where dB/dt = O(K1/') with 
an OZ which is located just upstream of the shock location along any pathline and 
which now acts as a weak precompression wave (figure 4b). The main heat addition 
zones NZ and DGZ are again located downstream of the shock on any pathline. 
Finally in Regimes I11 and IV the shock falls in the heat addition zones NZ and DGZ 
respectively (figure 4c, d). Normally strong embedded shock waves occur in Regime 
I whereas Regimes I11 and IV have weak embedded shock waves. 

Before we discuss the complete solution, we first notice that the condensation rate 
equation (28) and thereby its asymptotic solution along a pathline is valid only 
upstream of the shock location when an embedded shock wave is encountered. 
Denoting by subscript 1 the thermodynamic functions upstream of the shock location 
( t  < t,) and by subscript 2 the same functions downstream of the shock location ( t  2 t,) 
along a pathline, the condensation rate equation (28) should be replaced by 

along any pathline for t 2 t,. It can be demonstrated from (28) and (71) that g(t) is 
continuous, but not differentiable at t = t,. The continuity of g is a consequence of the 
assumption that the droplets pass through the shock unaltered. By denoting by 
subscripts + and - respectively the states as t + t: and t + t;, we can show that the 
shock relation for dg/dt takes the form 

@)+ = 2 @)- - rT3 gP_ sz c- exp [ - K-'B-]+ rT3 - c+ exp [ - K-'B+I. (72) 
P+ 

The asymptotic solution of the rate equation (71) along any pathline in each 
supercritical flow regime follows the same mathematical method as the corresponding 
supercritical flow regime of nozzle flows by Delale et al. (1993b). In fact the 
asymptotic expressions for g presented for the main heat addition zones (NZ and 
DGZ) downstream of the embedded shock in each supercritical regime of nozzle flows 
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FIGURE 4. Variation of the normalized activation function B along pathlines in distinct supercritical 
flow regimes and the characteristic condensation zones: (a) regime I, (b) regime 11, (c) regime 111, and 
(d)  regime IV. 

remain exactly the same as those in the corresponding zones (NZ and DGZ) of each 
regime downstream of the shock along any pathline if the normalized nozzle 
coordinate x is replaced by the normalized time t, if the normalized nozzle area A,  at 
the shock location is replaced by l/p- or by l/p+ depending on whether the 
corresponding term has resulted from the first or second integral of (71), and if dB/dx 
is replaced by dB/dt (we find no basis to present these lengthy expressions herein; 
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however, these expressions should not physically be interpreted as those of steady 
nozzle flows for the reasons given in the Introduction). The asymptotic expressions for 
the derivatives x = dg/dt can be worked out in exactly the same manner. Thus the 
asymptotic solution of the rate equation is readily available for the heat addition zones 
of supercritical flows in each regime. 

To be able to discuss, at least qualitatively, the solution of condensing shock tube 
flows with embedded shock waves, we should also exhibit the shock relations at t = t ,  
along any pathline. These relations follow from the normalized equations (16k( 18) 
written in conservation form (e.g. see Whitham 1974): 

and (75) 

where v is the normalized flow velocity in a frame where the shock is at rest given by 

u = u - u ,  (76) 

with U denoting the normalized shock velocity (with respect to a;) and where the 
subscripts + and - denote respectively the values of the discontinuous variables just 
downstream and just upstream of the shock location (if a variable is continuous at the 
shock location along a pathline, its value at the shock location is denoted by subscript 
z). The shock relations (73)-(75) together with the thermal equation of state at the 
shock location 

can be solved implicitly in an iterative manner for the variables just behind the shock 
(i.e. for p+, T+, p+ and u+) in terms of those just in front of the shock along any pathline 
provided that the shock velocity U is known (shock fitting). 

Having exhibited the local asymptotic solution with embedded shock waves along 
pathlines on the assumption that we can fit the shock, we now discuss the global 
solution qualitatively. Embedded shock waves due to excessive heat addition by 
condensation may appear in the rarefaction wave depending on the initial conditions 
in the driver section and in the channel or driven section. If these initial conditions are 
such that the heat released in the heat addition zones is not sufficient to force the left- 
running characteristics to intersect, the flow remains subcritical everywhere and the 
global solution is obtained by following the local asymptotic solution of 93 on each 
pathline entering the rarefaction wave. These type of flows are usually encountered in 
low-density flows where measurements on onset conditions are extremely difficult 
owing to very tiny droplets at onset and the heat addition zones show the structure of 
a weak compression wave. However, if the initial conditions are such that the left- 
running characteristics emanating from point 0 intersect, then the flow will be 
supercritical and shock waves arising from excessive heat addition and embedded in 
the rarefaction wave appear. In this case the left-running characteristics will approach 
each other forming the shock front KL of figure 5 where the origin K of the embedded 
shock front can be obtained by their envelope construction (this envelope construction 
resembles that in shock formation by compression waves resulting from a continuous 
acceleration of a piston initially at rest. In the latter case given the smooth piston path 
the construction of the envelope, thus the determination of the origin K of the 
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FIGURE 5. Global solution of supercritical flows with a weak embedded shock wave falling in either 
of the regimes I11 or  IV of figure 4:  EF is the condensation wave front, EK is the rarefaction wave 
tail and KL denotes the embedded shock front. 

embedded shock, is possible analytically since the compression waves in this case are 
simple waves possessing Riemann invariants). The rarefaction wave tail EK, which is 
tangent to the envelope of the family of intersecting characteristics at K and to the 
frozen rarefaction tail OT at E, is formed by compressive effects due to heat addition 
when the initial frozen rarefaction tail OE (the portion ET of the frozen rarefaction 
wave OT in this case is virtual) enters the heat addition zones. Unfortunately 
identifying the origin K of the embedded shock wave, which marks the end of the 
rarefaction wave tail, is not analytically possible in this case since the equations for the 
left-running characteristics in the heat addition zones are not explicitly known. 

Depending on the initial conditions point K may occur close to or far from point E 
(strong or weak embedded shock waves). If the initial conditions are such that the 
amount of heat added to the flow is sufficient for point K to lie far away (compared 
to flow length) from E, then the shock wave will be embedded in the heat addition 
zones of pathlines corresponding to supercritical flow regimes I11 or IV (weak 
embedded shock waves) as shown in figure 5.  In this case the condensation wave front 
EF given by the condition (dB/dt),=,l = 0 is located below the embedded shock wave 
for all pathlines initially at x, < x, where x, denotes the initial position of the pathline 
passing through point K. Thus on pathlines initially at x, where x1 < x, < 0 the flow 
remains subcritical whereas on pathlines initially at x, where x, < x1 the flow is 
supercritical falling in either of the regimes I11 or IV as shown in figure 5.  When the 
initial conditions are such that more and more heat is added to the flow in the heat 
addition zones, the shock strength increases as we move away from point K along the 
shock front. In such a case the condensation wave front EF may intersect the 
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FIGURE 6. Global solution of supercritical flows with strong shock waves: EK is the rarefaction wave 
tail, KL is the embedded shock front and EF is the subcritical condensation wave front. The portion 
G F  of EF is hypothetical and does not correspond to the onset conditions in this case. 

embedded shock wave, say at point G (figure 6). Now if the pathlines passing through 
K and G have initial positions denoted by x1 and x, respectively, the flow is subcritical 
on those pathlines initially at x, where x, < xo < 0, it is supercritical in either of the 
regimes I11 or IV for those pathlines initially at x, where x, < x, < x,, and it is 
supercritical in either of the regimes I or I1 for those pathlines initially at x, where 
x, < x, as shown in figure 6. In this case the relative onset conditions, defined by the 
maximum available nucleation rate, for the pathlines which exhibit supercritical flow 
in either of the regimes I or I1 are no longer given by the front GF where dB/dt = 0, 
but by the shock front GL (the true onset conditions measured empirically lie in the 
onset zone of each regime as shown in figure 4a-d). The onset zones in front of the 
embedded shock now act as weak compression zones where the straight line 
characteristics (simple waves) emanating from point 0 are slightly curved due to heat 
addition. If the amount of heat released in the heat addition zones is increased any 
further, point G moves towards point K both approaching point E exhibiting strong 
shock behaviour. 

To substantiate the above qualitative description of condensing shock tube flows 
with embedded shock waves, we return to the formidable problem of the computation 
of such flows. The computation in this case is fairly simple if the shock front KL can 
be constructed (shock fitting). In such a case the computation of the flow field along 
any pathline up to the shock front follows the same procedure as that for subcritical 
flows discussed in detail in 93  except in the onset zones where compression effects due 
to heat addition are felt more strongly than for subcritical flows resulting in the small 
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curvature of the left-running characteristics just upstream of the shock front. The flow 
variables just behind the shock along each pathline are then obtained by solving the 
shock relations (73)-(77). The computation of the flow field downstream of the shock 
along each pathline follows the same procedure as that in the heat addition zones of 
subcritical flows, namely by combining the asymptotic expressions for g and x = dg/dt 
in the heat addition zones downstream of the shock in each regime with the 
characteristic equations (29F(32) and solving numerically by following a procedure 
similar to that for subcritical flows (semi-analytical solution). Unfortunately we are not 
in a position to introduce a shock fitting technique for these embedded shocks at this 
stage (the precise shock fitting technique introduced for embedded normal shock waves 
in condensing nozzle flows by the present authors (Delale et al. 1993b), based on the 
physical argument of accelerating the flow back to supersonic speeds by passing 
through a saddle point in the relaxation zones, does not apply in this case). Thus the 
shock fitting problem still remains open. In principle the shock may be fitted by trial 
and error starting at a chosen origin K ;  however, this seems impractical owing to 
the enormous amount of computation time required for a satisfactory solution. 
Nevertheless the qualitative global solution discussed above is very useful in 
interpreting the results of the experiments. The quantitative solution with embedded 
shocks will also be possible whenever a reliable shock fitting technique for such shocks 
is introduced on physical grounds (shock capturing methods as discussed by Roe 1986 
and Moretti 1987 smear the embedded shock and are not useful here). 

5. Asymptotic predictions of wave fronts and comparison with 
experiments 

The asymptotic solution discussed above in $8 3 and 4 respectively for subcritical and 
supercritical condensing shock tube flows can be computed (except for shock fitting) 
and compared with experiments by assuming a nucleation rate equation in the form of 
(24) and a droplet growth law in the form of (27) for a chosen condensable vapour. We 
would herein like to compare the asymptotic solution for the expansion of water 
vapour with different carrier gases (argon, nitrogen and air) for which experimental 
data are available (e.g. see Barschdorff 1975; Kalra 1975; Peters 1987). For the range 
of initial driver section temperatures investigated (Ti typically between 295 and 300 K) 
the good agreement achieved in comparing the asymptotic solution of condensing 
nozzle flows by Delale et al. (1993a, b) with experiments by employing the classical 
nucleation theory and the Hertz-Knudsen droplet growth law together with some 
poorly known thermodynamic functions such as surface tension and condensation 
coefficient fitted to experiments, inspires us to use the same theories for nucleation and 
droplet growth law as a first comparison. For this reason we cast the classical 
nucleation rate equation into the normalized form of (24) (details are given in Delale 
et al. 1993~) with 
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where the normalized surface tensionf(T) and supersaturation S(p, T,g) are given by 

(82) 
+0.155(273.15- Ti T)]/T for T 2 249.4K/T; 

11.31 -0.03709T; T) T3 for T < 249.4K/T; 

and 

with v,, = 21.125, v, = -2.7246 x 10-’T;, v2 = 1.6853 x 10-5TL2, v3 = -6.095 x 103/T; 
and C, = 2.4576. In (78k(83) m’ is the mass of a single vapour molecule, 
k = 1.38 x lopz3 J K-’ is Boltzmann’s constant, and it is implicit that the expression for 
the surface tension is obtained from a fit to the experiments of Peters & Paikert (1989) 
and that for the latent heat is obtained from Sonntag & Heinze (1982). 

The Hertz-Knudsen droplet growth law can also be cast into the normalized form 
of (27) by following a procedure similar to that given in Delale et al. (1993a) with 

and 

exp v o + v , T + v z T 2 + ~  (S(p,T,g)-l}, (85) 

where the condensation coefficient a(T)  is obtained from a fit to the experiments of 
Peters & Paikert (1989) and is given by 

[ 1 Q(p, T, g) = a( T) 102(c1-0.5) T(ci-o.5) 

for T > 270K/T; r for T < 230K/T;. 
a(T) = 1 -O.O125(T; T-230) for 230KlT; < T < 270K/T; (8 6) 

The normalized critical radius r*(p, T, g) can be conveniently obtained from the 
normalized Thomson-Gibbs equation as 

r*(p’ T’g) = 105r&pcon 2m’ k (TiJ 100 In S(p, AT) T,g) 

It is worth mentioning that all of the actual flow variables appearing in (78)-(87) are 
to be inserted in SI units. Equations (78)-(87) identify the parameters K and h given 
respectively by (81) and (84) and the thermodynamic functions Z(p, T,g), B(p, T,g), 
Q(p, T,g) and r*(p, T,g) given respectively by (79), (80), (85) and (87) which enter the 
asymptotic expressions for the condensation rate equation. 

Using the above information for identifying the thermodynamic functions and 
parameters that enter the asymptotic theory, an algorithm for the subcritical expansion 
of water vapour with a carrier gas is developed following the procedure described in 
detail in $3. By this algorithm the condensation wave front (EF in figure 1) is located 
precisely and the effect of heat addition on the flow field is exhibited semi-analytically 
(or semi-numerically) in the heat addition zones. The development of a similar 
algorithm for supercritical flows following the global solution of $4 unfortunately 
requires a shock fitting technique which is not readily available. Therefore, we restrict 
our computations only to subcritical or smooth flows. In fact for any working vapour 
and given initial driver and channel conditions, one must start with the solution of 
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FIGURE 7. Condensation wave fronts for the expansion of water vapour in nitrogen in the rarefaction 
wave of a shock tube with initial driver section mixture pressure p i  = 680 Torr, mixture temperature 
Ti  = 295.3 K, water vapour pressure ( J J ; ) ~  = 18.6 Torr and initial channel air pressurepi = 100 Torr 
and air temperature Ti = 295.3 K. E’F  is the subcritical condensation wave front computed by 
Sislian & Glass (1976) by the method of characteristics, EF is the subcritical condensation wave front 
computed by the present asymptotic method and the symbol A shows the experimental onset point 
of Kalra (1975). 

subcritical flows to see whether or not the left-running characteristics intersect in the 
heat addition zones over lengths of practical importance. When the characteristics 
intersect (supercritical flow), embedded shock waves exist and the comparison with 
experimental data at this stage can only be made qualitatively from the results of $4. 

To be able to compare the predictions of the asymptotic theory, at least for 
subcritical flows using the algorithm developed above for the expansion of water 
vapour with a carrier gas in the rarefaction wave, with the results of experiments and 
existing numerical computations, we first divide the experiments performed into two 
categories : 

(a) experiments performed to predict the onset of condensation or the condensation 
wave front, and 

(b) experiments dealing with the complete global solution with or without embedded 
shock waves in the rarefaction wave. 

Various experiments falling in category (a) has been performed (e.g. Barschdorff 
1975; Lee 1977; and Peters 1987). Among experiments falling into category (b) we can 
cite that by Kalra (1975) (also discussed in detail in Glass, Kalra & Sislian 1977) for 
the expansion of water vapour in nitrogen which is accompanied by the numerical 
computations of Sislian (1975). We herein choose to compare the predictions of the 
present asymptotic theory with these experiments. Figure 7 shows the predictions of 
the asymptotic theory in the wave diagram using the above subcritical algorithm for 
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the experiments of Kalra (1975). The curves EF and E’F’ are respectively the 
condensation wave fronts predicted by the present asymptotic theory and by the 
numerical computations of Sislian & Glass (1976) which presents a brief summary of 
the results of the numerical computations of Sislian (1975) (it is important to mention 
that the observable difference between the two condensation fronts in figure 7 is not 
due to the method of prediction, but it arises mainly because different expressions for 
the surface tension and for the condensation coefficient are employed). As can clearly 
be seen from the figure, although the employment of the normalized surface tension 
AT) given by (82) and of the condensation coefficient a(T)  given by (86) in the classical 
nucleation theory and Hertz-Knudsen droplet growth law seems to have improved the 
prediction for the condensation wave front by Sislian & Glass (1976), the difference 
between the experimental onset point of Kalra (1975) at the observation station and the 
present prediction is still appreciable. Despite the fact that the thermodynamic 
properties employed herein for the vapour phase for a similar change of state have 
proved to provide good agreement of the asymptotic predictions with the results of 
condensing nozzle experiments (see Delale et al. 1993a, b), this difference in the onset 
conditions between the above prediction and experiments should be expected. The 
reason is that the experiments of Kalra (1975) show embedded shock waves due to 
excessive heat addition, which presumably fall in either of the regimes I or I1 along the 
pathline passing through the experimental onset point at the observation station. Now 
from the qualitative results of $4 (see figure 6), it seems that the embedded shock lies 
below the condensation wave front EF at the observation station, which is precisely the 
case here as shown in the x-t diagram of figure 7. Thus the curve EF in this case should 
not be called the condensation wave front, but should be interpreted as the maximum 
accessible nucleation or supersaturation front if the flow were continued downstream 
along those pathlines meeting the shock front in a smooth or subcritical manner. In 
fact when we continue our subcritical calculation for the conditions stated in figure 7 
beyond the curve EF in the heat addition zones, we immediately encounter very large 
gradients (e.g. on a typical pathline initially at xh = - 5 cm, dp‘ldt’ is of the order of 
10l2 Pa s-’) resulting in the intersections of the left-running characteristics which 
obviously support the above interpretation (the numerical computations of Sislian & 
Glass 1976 also show intersecting characteristics of the same family in the heat addition 
zones supporting the above interpretation). 

We now proceed to compare the predictions of the asymptotic theory with 
experiments of category (a) aimed to predict solely the onset of condensation. 
Unfortunately, for these experiments there is no evidence whether the flow is subcritical 
or supercritical. Thus we have to rely upon our computations in the heat addition 
zones. Figure 8 shows the subcritical asymptotic predictions for the onset of 
condensation for the expansion of water vapour in argon in the experiments of 
Barschdorff (1975) and Peters (1987). The differences between the present predictions 
and the experimental onset conditions of Barschdorff suggest that the flow is most 
probably supercritical, falling in one of the regimes I or I1 (supported by intersecting 
characteristics in the heat addition zones). The better agreement of the predicted onset 
conditions at low pressures with Peters’ experiments is not surprising since in this case, 
because of sufficiently low density, the flow is either subcritical or supercritical with a 
weak embedded shock wave falling either in regime I11 or IV (to our regret we are not 
able to decide whether the flow at the observation station is subcritical or supercritical 
since the initial channel conditions in Peters’ experiments are not specified). Finally 
figure 9 shows the onset conditions in the experiments of Barschdorff (1975) for the 
expansion of moist air. The differences between the predicted conditions and the 
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FIGURE 8. The onset conditions for the expansion of water vapour in argon in a shock tube where 
p:(T') denotes the saturation pressure: 0, the experimental data of Barschdorff (1975); A, the 
experimental data of Peters (1987); + , the present asymptotic predictions assuming subcritical flow. 
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FIGURE 9. The onset conditions for the expansion of moist air in a shock tube where p:(T') denotes 
the saturation pressure: 0,  the experimental data of Barschdorff (1975); +, the present asymptotic 
predictions assuming subcritical flow. 

experimental results at the observation station can also be interpreted on the basis of 
whether the flow therein is supercritical or subcritical in a manner similar to that done 
for figure 8. Once again the differences between the predicted results and the 
experiments seem to vanish as the initial partial vapour pressures are lowered, 
approaching the conditions for subcritical flows. 
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The differences in figures 7-9 between experiments and asymptotic predictions for 
the onset conditions of water vapour in various experiments are interpreted as to have 
arisen mainly from the existence of embedded shock waves falling in either of the 
regimes I or 11. Ut?fortunately, a simple shock fitting technique to fit the embedded 
shock wave is not available yet, so we do not really know how much of the differences 
will be removed. Even when the computations with embedded shocks are successfully 
carried out, some of these differences for the onset conditions may still prevail. These 
remaining differences may arise from : 

(i) the neglect of the heterogeneous nucleation mechanism ; 
(ii) the use of the classical nucleation theory and Hertz-Knudsen droplet growth 

law together with the choice of certain poorly known thermodynamic properties such 
as surface tension and accommodation coefficients ; 

(iii) the use of planar centred expansion wave theory; 
(iv) the neglect of other non-equilibrium relaxation modes such as the relaxation of 

the velocity slip and droplet temperature in the case of a two-velocity and two- 
temperature model of the two-phase mixture; 

(v) the neglect of viscous, heat conduction and diffusive effects; 
(vi) the neglect of unsteady effects that may arise from condensation dynamics, and 

(vii) the level of precision achieved in determining the experimental onset conditions. 
Some of these effects have already been taken into account in various studies (e.g. 
Kotake & Glass 1977 consider the effect of heterogeneous nucleation, Lee 1977 and 
Glass et al. 1977 take into account the shift of the origin of the rarefaction wave); 
however, the differences between experiments and predictions do not diminish 
satisfactorily. This fact also supports the view that what is mainly responsible for the 
differences in the onset conditions between experiment and theory is neglecting or 
smoothing out embedded shock waves, as has been discussed in detail in this 
investigation. 

6.  Discussion 
The asymptotic solution for shock tube flows with homogeneous condensation (the 

Riemann problem with homogeneous condensation) is presented for both smooth 
(subcritical) flows and flows with embedded shock waves arising from excessive heat 
release by condensation (supercritical flows). The global solution for subcritical flows 
where the flow is smooth along any chosen pathline is described both qualitatively and 
quantitatively (the solution in this case is completely analytical up to the onset of 
condensation and semi-analytical in the heat addition zones). For supercritical flows 
four distinct flow regimes, which may occur along any pathline intersecting the shock 
front, are distinguished from the asymptotic solution of the rate equation with 
embedded shocks. The global solution for supercritical flows is only qualitatively 
discussed owing to lack of a shock fitting technique for embedded shock waves. A 
subcritical flow algorithm for the expansion of water vapour in a carrier gas, which 
locates the condensation wave front precisely (analytically) is developed and applied to 
various experiments. With the results of the qualitative global solution of supercritical 
flows, the causes of the differences between the subcritical asymptotic predictions and 
the experimental onset conditions at the observation station are discussed and 
identified. 

It is shown that most of the experiments performed to date to predict the onset of 
condensation show supercritical behaviour with intersecting left-running charac- 
teristics in the heat addition zones. Differences between the experimental onset 
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conditions and the predicted subcritical condensation wave front (which has been 
incorrectly interpreted as onset of condensation for these experiments) then naturally 
arise since nucleation rates are quenched by the embedded shock along pathlines before 
reaching their maximum accessible values at the subcritical condensation wave front. 
Aside from these major differences, other differences which arise from possible sources 
discussed at the end of $ 5  may also occur. 

This work clarifies some of the most important features of shock tube flows with 
homogeneous condensation, especially by elucidating the nature of the differences 
between the experimental onset conditions and the predicted condensation wave 
fronts. It remains to introduce a shock fitting technique for embedded shock waves 
which will render the qualitative global solution of supercritical flows discussed in 94 
quantitative and which will make the computations of such flows possible. This is the 
main objective to be achieved in the future. 

The authors are grateful to Professor Dr B. Schmidt for useful discussions. One of 
us (C. F. D) acknowledges the support by the Alexander von Humboldt Foundation 
without which this work would have been impossible. 
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